浙江大学与南洋理工大学合作团队《自然》发文:成功研制首个三维光学拓扑绝缘体,有望建成光子的 “高速公路”

摘 要

浙江大学求是新闻网...

 

北京时间1月10日凌晨,国际顶级期刊《自然》报道了浙江大学信息与电子工程学院陈红胜教授课题组的一项最新研究。课题组在国际上研制成功了首个三维光学拓扑绝缘体,将三维拓扑绝缘体从费米子体系扩展到了玻色子体系,有望大幅度提高光子在波导中的传输效率。

这项研究由浙江大学陈红胜教授课题组和新加坡南洋理工大学Baile Zhang教授、Yidong Chong教授课题组合作共同完成,浙江大学信息与电子工程学院杨怡豪博士为论文第一作者,陈红胜教授和Baile Zhang教授、Zhen Gao博士为共同通讯作者,浙江大学为第一完成单位。

共同追求,让电磁波传播受到的干扰降到最低

光是生活中常见的电磁波,不仅能够在空中传播,也可以在引导电磁波的波导器件中传播,或者在两层介质交界面处沿着界面传播,即表面波。电磁波在这些波导或者介质交界面传播时,如遇到缺陷、杂质、波导拐弯等,会产生不可避免的散射,从而造成能量损耗,这将极大地降低波导的传输效率。 

浙江大学与南洋理工大学合作团队《自然》发文:成功研制首个三维光学拓扑绝缘体,有望建成光子的 “高速公路”

表面波遇到缺陷、杂质、或者波导拐弯等,会产生不可避免的散射

然而,表面波传播是光学导波器件中非常重要的导波基础,实现对这些杂质、缺陷、或者拐角“隐身”,能够对缺陷和拐角等“免疫”,从而使电磁波传播不受其影响的新颖波导在未来具有重大的应用前景。

2016年底还是博士研究生的杨怡豪就为解决这一难题开始研究,前瞻的研究领域+“零的突破”的挑战+新型人工电磁材料结构设计的丰富经验,让杨怡豪以及课题组一开始为研制首个三维光学拓扑绝缘体铆足了力量。

众所周知,在传统电路(比如电子芯片)中也经常碰到,电子遇到杂质、缺陷或者拐角时,会产生散射,造成发热、损耗等问题。为了解决这个问题,科学家提出了一种新材料——拓扑绝缘体。这种材料特性介于导体和绝缘体之间,其内部表现为绝缘体,而材料表面表现为导体。有趣的是,其表面电流源于材料内部电子能带的拓扑特性,能够对缺陷、拐角、无序等“免疫”,故而实现电子的高效运输。拓扑绝缘体自提出以来一直是凝聚态领域的一大研究热点,关于拓扑物质的研究工作荣获了2016年的诺贝尔物理学奖。

受拓扑绝缘体的启发,科学家提出了光学拓扑绝缘体,成功将拓扑绝缘体的神奇特性拓展到了光学系统。科学家们已经从理论上证明,表面波在光学拓扑绝缘体传播时,能够绕过缺陷、拐角,实现高效地传播。

然而,在浙大陈红胜课题组的这项研究成果发表前,三维光学拓扑绝缘体的实验研究仍然是空白,光学拓扑绝缘体的实验研究还局限于二维空间。

这部分原因在于,光子与电子有着本质的不同:光子为整数自旋的玻色子,电子为半整数自旋的费米子,因此不能简单地把电子三维拓扑绝缘体的设计拓展到光学体系。

那么为什么科学家依然要锲而不舍地研究三维光学拓扑绝缘体呢?这是因为光学拓扑绝缘体的实验研究局限于二维空间,在二维光学拓扑绝缘体中,表面波传播时只有一维单向的拓扑边界态,而表面波在三维光学拓扑绝缘体中传播时,其拓扑表面态表现为二维无质量狄拉克费米子。

因此,《自然》杂志的匿名评审专家,评价这项研究工作时指出,实验实现三维光学拓扑绝缘体十分重要,将推动该新兴领域的发展。

特殊结构,让缺陷“隐身”

针对现有的重重难题,陈红胜课题组和Baile Zhang、Yidong Chong研究组等构成的国际联合研究团队,通过联合攻关,首次实验实现了具有宽频带拓扑能隙的三维光学拓扑绝缘体。在这一研究过程中,杨怡豪博士巧妙地设计提出了一种由多个开口谐振器构成的电磁单元结构,该电磁单元结构具有很强的电磁双各向异性特性,这是实现宽频带三维光学拓扑绝缘体并使实验最终得以成功验证的关键。

浙江大学与南洋理工大学合作团队《自然》发文:成功研制首个三维光学拓扑绝缘体,有望建成光子的 “高速公路”

电磁双各向异性介质单元 



  • 136
    A+
发布日期:2019-09-11 17:52:21 所属分类: 高等教育

上一篇:浙大一项果蝇研究,探讨未来人类睡眠2小时或可精神一整天


下一篇:浙大一项研究在纸上画出可收集人体运动能的高效摩擦纳米发电机